The term neural network was traditionally used to refer to a network or circuit of biological neurons. The modern usage of the term often refers to artificial neural networks, which are composed of artificial neurons or nodes. Thus the term has two distinct usages:
This article focuses on the relationship between the two concepts; for detailed coverage of the two different concepts refer to the separate articles: biological neural network and artificial neural network.
A biological neural network is composed of a group or groups of chemically connected or functionally associated neurons. A single neuron may be connected to many other neurons and the total number of neurons and connections in a network may be extensive. Connections, called synapses, are usually formed from axons to dendrites, though dendrodendritic microcircuits and other connections are possible. Apart from the electrical signaling, there are other forms of signaling that arise from neurotransmitter diffusion, which have an effect on electrical signaling. As such, neural networks are extremely complex.
Artificial intelligence and cognitive modeling try to simulate some properties of biological neural networks.
This site uses cookies to give the best and personalised experience. By continuing to browse the site you are agreeing to our use of cookies. Find out more here.