Information theory is a branch of applied mathematics and electrical engineering involving the quantification of information. Information theory was developed by Claude E. Shannon to find fundamental limits on signal processing operations such as compressing data and on reliably storing and communicating data. Since its inception it has broadened to find applications in many other areas, including statistical inference, natural language processing, cryptography generally, networks other than communication networks — as in neurobiology, the evolution and function of molecular codes, model selection in ecology, thermal physics, quantum computing, plagiarism detection and other forms of data analysis.
A key measure of information is known as entropy, which is usually expressed by the average number of bits needed for storage or communication. Entropy quantifies the uncertainty involved in predicting the value of a random variable. For example, specifying the outcome of a fair coin flip (two equally likely outcomes) provides less information (lower entropy) than specifying the outcome from a roll of a die (six equally likely outcomes).
Applications of fundamental topics of information
This site uses cookies to give the best and personalised experience. By continuing to browse the site you are agreeing to our use of cookies. Find out more here.